Yehar's digital sound processing tutorial for the brai ndead!
version 1998. 10. 28

www. student.oulu.fi/~oniemta
[DSP/ DSPSTUFF. TXT

Chapt ers:

For eword

About sanpl ed sound

Addi ng two si ne waves together
VWhat's a filter?

Filter types: FIR and IIR

I nterpol ati on of sanpl ed sound
About filter design

Pol e-zero IR filter design
Some pole-zero IR filters

W ndowed FIR filter design
Filter inplenmentation

Positive and negative frequencies
Frequency shifting

Nat ure of sound and music

Fl anger

Wavet abl e synt hesi s

Bonus chapt ers:

Shuffling Il R equations
A collection of IIRfilters
A collection of FIRfilters

—— Foreword ---

This is witten for the audio digital signal processing enthusiasts
(as the title suggests ;) and others who need practical information on
the subject. If you don't have this as a "linear readi ng experience"
and encounter difficulties, check if there's sonmething to help you out
in the previous chapters. Conments and error reports are wel cone.
Especially i'd like to hear if you have had troubl e understandi ng
somet hi ng. [NEWS! JUNE/ 2000 - |'m working on a new book and am no

| onger updating this text]

In filter frequency response plots, |inear frequency and nagnitude
scal es are used. Page changes are designed for 60+ |ines/page printers.

Chapter "Shuffling Il R equations” is witten by ny big brother Kalle.
And, thanks to Tinp Tossavai nen for sharing his DSP know edge!

Copy and use this text freely.

by Yehar, Ali N enitalo, ollinie@reenet. hut.f

--- About sanpl ed sound ---
Not e that "sanple" can nmean (1) a sanpled sound or (2) a sanpl epoint!
Sanpl ed sound data is a pile of sanples, anplitude val ues taken from
the actual sound wave. Sanpling rate is the frequency of the "shots".
For exanple, if the frequency is 44100, 44100 sanpl es have been taken

i n one second.

Here's an exanpl e of sanpling:

0---0
_/ --0__
0_ _0---0__ 0 -0---0___
\ _-0- -0-- 0-_
E T O o (P e T e S S L N 0 |
-0- - -0_
--0
<--->

1/ Sanpl erate

The original sound is the curve, and "0"s are the sanpled points. The
horizontal straight line is the zero |evel

A sanpl ed sound can only represent frequencies up to half the
sanplerate. This is called the Nyquist frequency. An easy proof:

You need to have stored at |east two sanpl epoints per wave cycle, the
top and the bottom of the wave to be able to reconstruct it |later on

o I
\ o/ \ o/ \ o/ \ o/ \ o/ \ o/ \ o/ \ o/ \0

If you try to include above Nyqui st frequencies in your sanpled sound,
all you get is extra distortion as they appear as |ower frequencies.

———————————————————————————————————— Addi ng two sine waves together ---

A Sound consists of frequency conponents. They all |ook exactly Iike
sine waves, but they have different frequencies, phases and anplitudes.
Let's look at a single frequency:

| __ _ _ _ I
|17\ 17\ 17\ 17\ |
N) N B N
| _J \ _J \ /]
| |

Now, we take the sanme frequency from another sound and notice that it
has the sanme anplitude, but the opposite (rotated 180 degrees) phase.

I _ _ _ |
| 17\ 17\ /A 17\
A S A A
I\ J \ _J \ |
| |

Merging two signals is done sinply by adding themtogether. If we do
the same with these two sine waves, the result wll be:

It gets silent. If we think of other cases, where the phase difference
is less than 180 degrees, we get sine waves that all have different
anpl i tudes and phases, but the same frequency.

Here's the way to cal cul ate the phase and the anplitude of the
resulting sinewave... Convert the anplitude and phase into one conpl ex
nunber, where angle is the phase, and absol ute val ue the anplitude.
anpl i tude*e”(i *phase) = anplitude*cos(phase)+i *anplitude*si n(phase)

If you do this to both of the sinewaves, you can add them together as
conpl ex nunbers.

Exanpl e:
(Wave A) anplitude 1, phase 0, (Wave B) anplitude 1, phase 90 degrees
R R 0o e R
/ | \ / | \ / | \
I I I I I I I I I
|- REERI SR EEREE SRR L EEREE EEERIE
I I I I I I

As you see, the phase of the new sine wave is 45 degrees and the
anplitude sqgrt(172+172) = sqrt(2) = about 1.4

It is very inmportant that you understand this, because in nany cases,
it is nore practical to present the anplitude and the phase of a
frequency as a conpl ex nunber

When addi ng two sanpl ed sounds together, you may actually w pe out sone
frequenci es, those that had opposite phases and equal anplitudes. The

average anplitude of the resulting sound is (for independent originals)
sqgrt (a”2+b”2) where a and b are the anplitudes of the original signals.

-- What's a filter? ---

The main use of a filter is to scale the anplitudes of the frequency
conmponents in a sound. For exanmple, a "lowpass filter" nutes al
frequency conponents above the "cutoff frequency", in other words,
multiplies the anplitudes by 0. It lets through all the frequencies
bel ow the cutoff frequency unattenuat ed.

*** Magni tude ***

If you investigate the behaviour of a |owpass filter by driving various
si newaves of different frequencies through it, and nmeasure the
anplifications, you get the "magnitude frequency response". Here's a

pl ot of the magnitude frequency response curve of a |lowpass filter

R R _ |

I _ \ _ I

| Audi bl e | I naudi bl e |

I I I

I I I

I _ I

O_ T s oo oo oo oo e s

I I I
OHz Cut of f frequency nmax
Frequency is on the "-" axis and anplification on the "|" axis. As

you see, the anplification (= scaling) of the frequencies bel ow t he
cutoff frequency is 1. So, their anplitudes are not affected in any
way. But the anmplitudes of frequencies above the cutoff frequency get
multiplied by zero so they vani sh

Filters never add any new frequency conponents to the sound. They can
only scale the anplitudes of already existing frequencies. For exanple,
if you have a conpletely quiet sanple, you can't get any sound out of
it by filtering. Also, if you have a sine wave sanple and filter it,
the result will still be the sanme sine wave, only maybe with different
anpl i tude and phase - no other frequencies can appear

* Kk * Phase * Kk *

Pr of essi onal s never get tired of rem nding us how inportant it is not
to forget the phase. The frequency conponents in a sound have their
anplitudes and... phases. If we take a sine wave and a cosi ne wave,

we see that they look alike, but they have a phase difference of pi/2,
one fourth of a full cycle. A so, when you play them they sound alike.
But, try wearing a headset and play the sinewave on the |eft channel
and the cosine wave on the right channel. Now you hear the difference!

Phase itself doesn't contain inportant information for us so it's not
heard, but the phase difference, of a frequency, between the two ears
can be used in estimating the position of the origin of the sound so
it's heard.

Filters have a magnitude frequency response, but they also have a
phase frequency response. Here's an exanple curve that could be from
a |l owpass filter:

e I R e e +
| = |
0- +::::::-_-_-_-_T-_-_ ---------- | R ettt
| __ - |
| |
-pl-r------------------------i ---------------------------- r
OHz Cut of f frequency max

If you filter a sound, the values fromthe phase frequency response
are added to the phases of the frequencies of the original sound.

Li near (straight line) phase is the same thing as a pl ain del ay,
although it may look wild in the plot if it goes around several timnes.
If your, for exanple, |lowpass filter doesn't have a |inear phase
frequency response, you can't turn it into a highpass filter by
sinply subtracting its output fromthe original with equal delay.

*** Conplex math with filters ***

The response of a filter for a single frequency can be expressed as a
conpl ex nunber, where the angle is the phase response of the filter and
t he absol ute val ue the nagnitude response. When you apply the filter to
a sound, you actually do a conplex nultiplication of all the frequency
conponents in the sound by the corresponding filter response val ues.
(Read chapter "Adding two sinewaves together" if you find this hard to
understand.) Exanple: The response of a filter is (0,1) at 1000Hz. You
filter a sine wave, with the phase & anplitude information presented as
t he conpl ex nunber (0,1), of the same frequency with it:

Si ne wave Filter Resul t
-0 e 0-e- R R
/ | \ / | \ / | \
| | | | | | | | |
|- R IR EEEES boooo] = 0] -
| | | | | |

The phase of the sine wave got rotated 90 degrees. No change in the
anpl i t ude.

*** Conmbining filters ***
Serial (A*B): In --> FILTER A --> FILTER B --> Qut

The conbi ned response of these two filters put in serial is the
response of A multiplied by the response of B (Conpl ex nunbers as

always!). If you only need to know t he nagni tude response, you coul d
as well nultiply the absol ute val ues.

Paral l el (A+B): --> FILTER A -->
In Qut
--> FILTER B -->

In the figure, both filters get their inputs fromthe same source.
Their outputs are then added back together, form ng the final output.
Now you need to use addition in solving the conbi ned response.

--- Filter types: FIRand IIR ---

= finite inpul se response
= infinite inpul se response

FIRfilter is nore straightforward, and easier to understand. Finite
i mpul se response neans that when the filter input has remained zero

for a certain tine, the filter output al so becones zero. An Infinite
i mpul se response filter never fully "settles down" after turning off
the input, but it does get quieter and quieter though

* k% FIR***

A basic FIRfilter could be:
ouput (t) = a0*input(t) + al*input(t-1) + a2*input(t-2),

where "input" neans the sanple values fed to the filter
In this case, people would speak of a "3 tap" filter

It's up to the coefficients (a0, al, a2) what this filter will do to
t he sound. Choosing the coefficient values is the hardest part, and
we'll get to that later. To design your own filters, you need to
under st and sone of the math behind and know the right nethods.

In the above filter exanple, only past input values are used. In
realtime filters, this is a requirenent, because you don't know the
future inputs. In sanple editors and such, you don't have this
linmtation, because you have the whol e input data ready when you begin.

If your filter is:
output(t) = aO*input(t+1) + al*input(t) + a2*input(t-1),

and you need a realtine version of it, just convert it to:
output(t) = aO*input(t) + al*input(t-1) + a2*input(t-2).

The only difference is the one sanple delay in the realtine filter

* Kk * ||R***

Unlike FIRfilters, IIRfilters also use their previous output val ues
in creating their present output. Here's a sinple exanple:

output(t) = a0*input(t) + al*input(t-1) + a2*input(t-2)
+ bl*output(t-1) + b2*output(t-2) + b3*output(t-3)

This could be called "3 input, 3 output tap" filter.

IIR filters can never use future output values, because such don't yet
exi st!

There can be several ways of inplenenting the sane IIRfilter. Sone may
be faster than the usual input-output-and-coefficients way. Anyhow,
every IIRfilter can be witten in this form and it nust be used in
filter design and exani ning cal cul ati ons.

An i mpul se response (= What the filter will do to a one sanpl epoi nt
i mpulse) of an IR filter often | ooks nore or less like this in the
sanpl edat a:

|

|

|

|

| - _

====-\----/---\---/---\===/ ===================—=—=—=======
_ -

Sonme badly designed IIRfilters are unstable. This results in

ouput getting |ouder and | ouder instead of quieter and quieter. A
sinple exanple of this is: output(t) = input(t) + 2*output(t-1). As
soon as it gets input data, it gets crazy.

* Kk * FFT * k%

The above described filter types process the data sanple by sanple.
FFT, Fast Fourier Transformation, doesn't. It does the work chunk by
chunk. A chunk, which nust be of length 2?n, is first converted into
spectral information - conplex nunbers representing the phases and
anpl i tudes of the frequency conponents. In this form it is very easy
to mani pul ate the spectrum Then I FFT (I nverse FFT) is used to convert
the informati on back to a chunk of sanpl edat a.

If you just take a chunk of sanpledata, it has sharp edges, which is
bad for the FFT. W ndow ng functions are used to snpothen these edges.
"Rai sed cosine", cos(x pi/2)"2, is a well-known w ndowi ng function
Here you see what happens when you apply a wi ndowi ng function to a
chunk of sanpl edat a:

Sanpl edat a chunk: W ndow ng function: Resul t:
(square wave) (rai sed cosine)

1-1-- --- -1 | IR | _-- |
I | / \ | I
| I L R ‘oo

0 -| I -l =] --
| | [|
I | | \ / I
- | -1 I |

Overl appi ng wi ndows (= chunks) are used, so the whol e sanpl edata goes
actually twi ce through the FFT. Here you see how t he wi ndows overl ap

This is possible because of the symretrical shape of the w ndow ng
function. If you add together overl apping rai sed cosi ne wi ndow ng
functions, you get a flat result.

------------------------------------ I nterpol ati on of sanpled sound ---

Sonetinmes (resanpling, precisely defined delay) you need to get

sanpl eval ues from between the known sanpl epoints. That's when you need
interpolation. If you don't interpolate, and just throw away the
fractional part of your sanpl eoffset, you get a Iot of high frequency
di stortion:

0- - - 0---0--- 0- - -

I I | I
0- - - 0- - - 0- - - 0- - -

| I | I
0---0--- 0---0---

In the exanple, the original sanplepoints try to represent a sine wave.
The closer the interpolated curve is to a sine wave, the better the
interpolation algorithmis. The sinpliest interpolation nmethod is
linear interpolation. Straight |ines are drawn between two adjacent
sanpl epoi nt s:

0 0---0_ 0

T0---0 "0---0

Still I ooks quite "edgy" to be a sine wave. However, the inprovenent
to uninterpolated is significant. There's al so a drawback - the
frequencies just bel ow the Nyqui st frequency get attenuated, even nore
than without interpolation. Here's the formula for |inear
interpolation: new = old(int)+(old(int+1)-old(int))*fract, where int
means the integer part of sanple offset and fract the fractional part.

Next step could be Hernite curve, which gives in every way better
gquality than linear interpolation

0 -0 0-_ 0

Wth linear interpolation, you needed to know 2 sanpl epoints at tinme
to be able to draw the line. Wth Hermte curve, the nunber is 4. The
i nterpolation curve goes through the two mddle points, and the points
1 and 4 are used in shaping the curve. The formula is a cubic:
new = a*fract”3 + b*fract~2 + c*fract + old(int+0), where:
3 (old(int) - old(int+l)) - old(int-1) + old(int+2)
A = - - - - s s s e m e e e s e m e - - - - -

b=2old(int+l) + ol d(iNt-1) - -c-cmmmmomeomamaamamaa-

old(int+l) - old(int-1)

And this one here is where a,b,c,d were solved from

f(x) = ax*3 + bx"2 + ¢cx +d

I/ f(0) = y(0)
| (1) = y(1)
<
| f°(0) = (y(1) - y(-1)) / 2
V(1) = (y(2) - y(0)) [2
A perfect interpolation also exists. By replacing all the sanple points

with correctly scaled sinc curves, sin(pi x)/(pi x), and by addi ng them
together, you get exact, perfect interpolation. Here is one of the
sanpl epoints replaced with a scal ed sinc curve:

Sinc curve is endlessly long, so you' d have to use all the sanpl epoints
in calculation of one interpolated value. A practical solution would be
tolimt the nunber of sanples to say 1000. It will still be too slow
for arealtine application, but it'll give great accuracy. If you
insist to use sinc in arealtine interpolation algorithm try using a
wi ndowi ng function and a | ow nunber (at |east 6) of sinc curves.

*** Downsanpling ***
If you want to downsanpl e (decrease the sanplerate), you nust first

filter away the above Nyqui st frequencies, or they will appear as
distortion in the downsanpl ed sanpl e.

--- About filter design ---

In the process of filter design, you often need to nake conprom ses.

To have sharp edges or steep slopes in the nagnitude response, you wll
need a big, and therefore slow filter. In other words, filters with | ow
nunber of taps practically always have gently sl oping nmagnitude
responses.

In the case of IIRfilters, sharp edges in nmagnitude often nean an
ugly (very nonlinear) phase frequency response, and close-to-Ilinear
phase response a gently sl oping magni tude response. Wth FIR filters,
an attenpt to create very sharp edges may cause waving in the
magni t udes of nearby frequenci es.

IIRfilters are great for a realtinme routine, because they are fast,
their properties (for exanple cutoff frequency) can be quickly changed
in the nmiddle of action, and, they sound like real analog filters. :)
The nonli near phase response of IIRfilters usually doesn't matter

FIRfilters could be used where the quality and |linear phase are
important, for exanple, in a sanple editor. People who filter other
signal s than sound, often desire linear phase frequency response.

Wth stereo signal, it is inportant to have identical phase changes on
left and right channels.

Some filters and their stylized magnitude frequency responses:

Lowpass:

Hi ghpass:

Bandpass or peak:

||
Not ch, bandreject or bandstop:

Al | pass:
(Changes i n phase only)

If you have a synbolic cal culation program i strongly recommend you to
use it in the nmechanical calculations, just to nake your life easier
"Derive" is an old DOS program but still very useful

*** \White noi se ***

White noi se neans the sort of noise that has flat spectrum You can
easily create it by using random nunbers as sanpl eval ues. |If you want
to know the magni tude frequency response of a filter, apply it on a

| ong sanple of white noise and then run a spectrum analysis on the

out put. What you see is the nagnitude frequency response of the filter

Another way is to send a one-sanple inpulse, which originally has a
flat spectrum An inpulse looks like this in the sanpl edata:
0o, 00 0, 0 1, 0,0 0,b O O - where the inpulse is the "1" in the mddle.

Fromthe two, the inpulse thingy is faster, but using white noise can

gi ve cleaner-1ooking results, because errors will be less visible.
For nmuch the sane reasons, when you are watching videos, a stil
picture will |ook nore snowy than the running picture. Taking a

spectrum anal ysis on a long sanple is usually done by dividing it to
snmal | er pieces, analyzing themseparately and then taking the average
of all the anal yses. My personal choice here would be the program
"Cool Edit 96", which is for Wndows.

-------------------------------------- Pol e-zero IR filter design ---
Pol e-zero method is the easiest way of designing fast and sinple IIR
filters. When you have learned it, you will be able to design filters
by yoursel f.

Here's the conplex "Z-plane", the one used in the pol e-zero nethod:

pi/2 "|" axis: imaginary
I "-" axis: rea
| | \ (as al ways!)
/ | \
| | |
pi -]-------- to---o- - |- 0
| | |
\ |)
_ | _
R
3/ 2 pi

I magi ne the frequencies to be wapped around the unit circle. At angle
0 we have OHz, at pi/2 we have sanplerate/4, at pi we have

sanpl erate/ 2, the Nyquist frequency. You shouldn't care about higher
frequencies, since they will never appear in the signal, but anyway, at
2pi (full cycle) we have the sanpling frequency.

So if you used sanpling frequency 44100 Hz, 0 Hz would be at (1,0),
11025 Hz at (0,1) and 22050 Hz at (-1,0).

What are pol es and zeros then?

They are cute little things you can place on the Z-plane, like this:
RS T 0 X = pole
1o | \ 0 = zero
/ | X \
| | X |
_|_0 ______ Fom e oo oo |_
| | X |
\ | x
\ o | _
___|___ 0

There are sone rules you have to renenber. Pol es nust always be inside
the unit circle, never outside or on it. Zeros can be put anywhere.
You can use any nunber of poles and zeros, but they nust all have
"conjugate pairs", if they are not positioned on the "-" axis.
Conjugate pairs nmeans that if you put for exanple a zero to

(0.6, 0.3), you nust put another zero to the conjugate coordi nate,
(0.6,-0.3). And the sanme thing with poles.

But hey! Wat do pol es and zeros DO?

Pol es anplify frequencies, zeros attenuate. The closer a pole is to

a frequency (on the unit circle, remenber?), the nore it gets
anplified. The closer a zero is to a frequency, the nore it gets
attenuated. A zero on the unit circle conpletely nutes the frequency it
is "sitting on".

Now it could be the right time to try this out yourself. There are free
filter design prograns around that allow you to play with pol es and
zeros. One candidate could be: "QEDesign 1000 denp" for Wndows. It's
somewhere on the Internet, you'll find it.

*** Designing a bandpass filter ***

The sinpliest filter designed using pole-zero is the foll ow ng
bandpass filter

1

1

1
X
1

pol e
zero

Pol es anplify frequencies, so you could draw the concl usion that the
nost anplified frequency is the one at the sane angle as the pole.
And you are alnost right! The only problem conmes fromthe conjugate
pol e, which also gives its own anplification. The effect is strongest
at angles close to 0 and pi, where the distance between the two pol es
is the smallest. But don't let this confuse you, we'll get back to it
| at er.

So the angle of the pole deternines the passband frequency. Wiat's the
effect of the absolute val ue (= radius) then?

As stated, poles anplify frequencies, and the anplification is stronger
when the pole is closer to a frequency. |In our bandpass filter,

i ncreasing the radius of the pole causes the magnitude response to
becone steeper and passband narrower, as you see here:

Posi ti ons of poles:

Correspondi ng magni tude frequency response plots (normalized):
I I
| I
| -- I
| |
I \ I
| I
I -
| |
I I

(SR=sanpl er at e)

Let's call the radius "r" fromnow on. (Sonme of you night renenber the
letter "q" fromanalog, "resonant” filters. This is nmuch the sanme.) In
this case we have the limtation: 0 =<r < 1, since poles nust be
inside the unit circle. So changing r changes steepness, resonance.
This "resonance" - it's not a magic thing, just one frequency being
anplified nore than others.

*** From pol es and zeros to filter coefficients ***
There is a transfer function:

a0 (z-z1) (z-z2) (z-z3) (z-z4)

(z-p1) (z-p2) (z-p3) (z-p4)

where z is frequency, in the (conpl ex) w apped-around-the-unit-circle
coordinate form H(z) gives the response (conmplex!) of the filter at
the frequency z. Pl, p2, p3 and so on are positions of poles and z1,
z2, z3 and so on positions of zeros. A0 is the first input coefficient
of the filter. Here's the IIRfilter forrmula again, in case you have
forgotten

output(t) = a0*input(t) + al*input(t-1) + a2*input(t-2) + ..
+ bl*output (t-1) + b2*output(t-2) + b3*output(t-3) + ..

Qur bandpass filter only has one pole, and its conjugate pair, so we
can sinplify the transfer function

z"2 - plz - p2z + plp2 z"2 + (-pl -p2)z + plp2
and replace pl and p2 with the coordi nates of the conjugate pol es:

pl = (px, py) = px + ipy, p2 = (px,-py) = px - ipy

H(Z) = cCotTTToToTTTTETETTEEOTEEETETETTEEIEEAEEEEIEEE A A EE T EE T
z"2 + (-(px +ipy) -(px - ipy))z + (px - ipy)(px + ipy)

zZ"2 + (-2px)z + (px"2 - i72 py"2)

z"2 + (-2px)z"1 + (px~2 + py”2)z~0

Let's give the divisor a closer |ook. Say:

|
o

z"2 + (-2px)z"1 + (px"2 + py”2)z~0 = * zZMN(-2)

I
o

z"0 + (-2px)z"(-1) + (px"2 + py"2)z"(-2)

z"0 = -(-2px)z"(-1) - (px"2 + py"2)z"(-2)
Powers of z here are actually indexes to the output of the filter:

output (t+0) = -(-2px)output(t-1) - (px"2 + py”~2)output(t-2)

So we know how to cal culate the output side coefficients fromthe
position of the pole:

bl
b2

2px
- (px"2 + py”2)

X! Let's say the passband frequency is at the Z-plane at position ph:
ph = phx + i phy

phx
phy

cos(2pi f/SR)
sin(2pi f/SR)

The pole is at the sane angle as the frequency on the unit circle, but
has radius r. Therefore:

pl = r*ph = r*(phx, phy) = r*(phx + i phy)
px = r*phx
py = r*phy

Now t hat we know how the position of the pole depends on the frequency,
we can rewite the output side coefficients:

bl = 2px
= 2*r*phx
b2 - (px"2 + pyn2)

- ((r*cos(2pi f/ISR))"2 + (r*sin(2pi f/SR)"2)
- "2

But we nmustn't forget the dividend (of the transfer function), where
powers of z are indexes to the input of the filter

a0 z~0 -> a0 input(t+0)
This must be added to what we al ready have sol ved fromthe output side:

output(t+0) = a0 input(t)
-(-2px) output(t-1) - (px"2 + py”2) output(t-2)

Next we have to decide what to put to a0. This is called nornalization
The purpose of a0 is just to scale the output of the filter. In our
bandpass filter, we want the anplification at the passband frequency
to be 1. So we can wite the equation:

| H(ph)| =1

|
| (ph-pl) (ph-p2)

|
| (ph-pl) (ph-p2)

a0

| (ph-pl) (ph-p2) |

| ((phx + i
((phx + i

r*(phx + i
r*(phx -

phy) - phy))
phy) - phy)) |

| phx~2 (r-1)"2 + phy”2 (r-1) (r+l1) +

(-2 phx phy (r-1)) |

sqrt((phx"2 (r-1)7~2 + phy*2 (r-1) (r+l1))"2 +
(-2 phx phy (r-1)))"2)

* sqgrt(r*(r-4*phx+2) +1)

(1-r)

There it is! Nowthe filter is ready:
SR =
f

r

sanpling frequency
passband center frequency
[0,1)

phx =
a0
bl
b2

cos(2pi f/SR)

(1-r) * sqrt(r*(r-4*phx+2)+1)
2*r *phx

-rn2

output(t) = a0 * input(t) + bl * output(t-1) + b2 * output(t-2)
*** | nproving the sinple bandpass filter ***

We coul d conpensate the effect of the conjugate pole by adding a zero
onto the "-" axis, between the poles. For exanple, if we had pol es at

coordinates (0.6, 0.5) and (0.6,-0.5), we'd put a zero at (0.6, 0):
R
! | _
/ | X \
| | |
_| ________ +____O___|_
| | |
\ x

The transfer function for this is:

(z-pl) (z-p2)

The out put side coefficients are exactly the sane as before. Input side
coefficients can be solved like this:

z1 = zx + i*0 = zx
a0 (z-z1) = a0 (z-zx) = a0z - a0zx = a0zl + (-a0zx)z"0
-> a0 * input(t+l) + (-a0zx) * input(t)

In case you want to use this filter, you should be able to do the
normal i zation yourself. | won't do it here.

*** Words of wi sdom ***

It is easy to make a filter nore efficient: Double all poles and
zeros. The frequency response of the new filter is the square of the
old. There are better ways, but this is the easiest.

If you put a zero on a pole, you neutralize both.

A pole outside the unit circle causes the filter to beconme unstable. A
pole on the unit circle may turn the filter into an oscillator

Large nunber of poles and zeros nmeans | arge nunber of taps.
Zeros affect the input coefficients, poles output.

Pol es and zeros mnmust have conjugate pairs, because otherw se you' d get
conplex filter coefficients and, consequently, conplex output signal

Wth lowr values, the nost anplified frequency is not always at the
same angle with the pole, because of the effect of the conjugate pole.
Try differentiating the magnitude response if you want exact precision

An IIR filter with no poles is a FIRfilter.

--------------------------------------- Sorme pol e-zero IR filters ---
0 =<r < 1 always appli es.

*** Bandpass with r ***

Read chapter "IIR filter design using pol e-zero nethod".

*** Notch with r ***

A zero with a conjugate pair at:

|
| | 0_ (cos(2pi f/SR), sin(2pi f/SR))
/ | X \
[| | A pole with a conjugate pair at:
R e | - r * (cos(2pi f/SR), +- sin(2pi f/SR))
| | |
\ | x Use the frequencies at (1,0) and (-1,0) in
\ | _ 0 normal i zati on. Depending on f, either of them
I

--- has hi gher anplification.
The higher the r, the narrower the stopband.

*** L owpass wWith r ***

This can be done in several ways:

One or two zeros at: (-1,0)

I
! | _
/ | x \ A pole with a conjugate pair at:
| | | r * (cos(2pi f/SR), sin(2pi f/SR))
-0-------- B |_
[| | Use O Hz in nornalization.
\ | x _/
_ | _
S
I A pole with a conjugate pair at:
| | \ r * (cos(2pi f/SR), sin(2pi f/SR))
/ | \
[| X | Use 0 Hz in nornalization.
_| ________ B |_
[| X | Only works with f val ues bel ow SR/ 4.
\ | _
\ | ! Same as the sinple bandpass filter.
|

The higher the r, the stronger the resonation. Resonant |owpass filter
is surely the nost used filter type in synthesizers.

% Allpass with r *

o _ _---|---__ A pole with a conjugate pair at:
| | \ r * (cos(2pi f/SR), sin(2pi f/SR))

/X | \

[| | A zero with a conjugate pair at:
S BRI Fommme - - | - (1/r) * (cos(2pi f/SR), sin(2pi f/SR))

I I I

\ X | | Al'l pass filter has a flat magnitude frequency

\ | ! response, but a wavy phase response. A zero
0 -] --- that has the sane angle as a pole, but inverse

radi us, neutralizes the effect of both in the
magni t ude frequency response, but not in the phase frequency response.
The higher the r, the stronger the effect. One use for allpass filters
is to nake the phase response of an IIR filter linear, by using a
correctly paraneterized allpass filter in serial with the IIRfilter.

*** H ghpass with r ***

Al nost the same as | owpass.

| I
| | _ _ | \ Nor mal i zati on frequency
/ | \ / | \ (-1,0), zeros, if any, at
I I I I X | | (1,0).
R Ho----o - 0- -|-------- Hooo---- | -
I I I I X | I
\ | | \ | |
\ | | /
| I

-- W ndowed FIR filter design ---
*** | npul se, sinc ***

If you read about sinc interpolation in the chapter "Interpol ati on of
sanpl ed sound", you know that you can replace a single sanple peak

(= inpulse) in the sanpledata with a correctly stretched sinc function
Correctly stretched nmeans anplitude*sinc(t).

VWhen you run a spectrum analysis on an inpul se, you get a flat spectrum
with upper limt at sanplerate/2, the Nyquist frequency. Because
i mpul se = sinc, this is also the spectrum of sinc:

|

|

| "|" axis: anplitude
| | "-" axis: frequency
0 SR/ 2

You coul d draw the concl usion that you get the sinc function if you sum
together all the frequencies fromO to SR/ 2, and divide the sumby the
nunber of frequencies, to fulfil the equation sinc(0) = 1. And you' d be
right.

From the spectrum anal ysis, you know that all the frequencies sunmmed

t oget her have equal anplitudes. But what's their phase at the center of
the inpulse? Sinc function is symretrical around x=0, so is cosine - so
sinc nust be made of cosines. If you test this with about 100 cosi nes,
you get a pretty close approxi mati on of sinc.

The sumof all frequencies fromO to 1 (conparable to SR/ 2), divided
with their nunber, can be witten as: (Here "o00" neans infinite)

> cos(x---) (x -> pit)

i =0 si n(x) sin(pi t)
lim -------------- = - > aee------ = sinc(t)
n->00 n+1 X pi t

As done above, x nust be replaced with "pi t", because the cycle | ength
of sinis 2 pi, which nmust be stretched to 2 (which is the "wavel engt h"
of the Nyqui st frequency in the sanpl edata).

*** Phase shift ***

What if we replaced the cosines with sines? Lets try it! There's a

uni versal formula (which, btw, i invented nyself) we can use:
n
- X
\ i /
> f(x---)
! n | f(x) dx
i =0 0
lim ------------ S LR
n->00 n+l X
Theref ore:
n
- X
\ [/
> sin(x---) (x -> pit)
! n | sin(x) dx
i =0 0 1 - cos(x) 1 - cos(pi t)
lim ------cc-mm--- R = eeeeeeo--- B
n- >00 n+1 X X pi t

Now, if we replace all the inpulses in the sound with this new
function, we actually performa -90 degree phase shift! This can be
done by creating a FIRfilter, where the coefficients are taken from
this new function: (1-cos(pi t))/(pi t), but in reverse order, by
replacing t with -t, so it becomes: (cos(pi t)-1)/(pi t).

Here's an exanple that explains why it is necessary to use -t instead
of t: Say you want to replace all the inpulses in the signal with the
sequence 1,2,3. If the input signal is 0,1,0, conmpn sense says it
shoul d becone 1,2,3. If you just use 1,2,3 as filter coefficients

in that order, the filtered signal becones:

in(0-1)*1+i n(0)*2+i n(0+1) *3,
in(1-1)*1+in(1)*2+i n(1+1)*3,
in(2-1)*1+in(2)*2+in(2+1)*3 = 0+0+3, 0+2+0, 1+0+0 = 3,2, 1

Which is not what you asked for! But if you use coefficients 3,2,1, you
get the right result, Ok, back to the -90 degree phase shift filter..

VWhen you are picking the filter coefficients from (cos(pi t)-1)/(pi t),
at t=0 you unluckily get a division by zero. Avoid this by calculating
the limt t->0, on paper, or with a math proggy. If you use your brains
alittle, you notice it is O, because the filter formula is a sum of
sines, and sin(0)=0, so at t=0 it is a sum of zeros.

Li ke sinc, our new function has no ending, so a conprom se nust be nade
in the nunber of taps. This causes waves in the magnitude response, and
attenuation of the very | owest and hi ghest frequencies. By applying a
wi ndowi ng function to the coefficients, you can get rid of the waves,
but i don't know anything that would help with the attenuation, except
nore taps. The wi ndowi ng functions used with FFT work here al so. The
center of the windowing function nust be at t=0, and it nust be
stretched so that the edges are lay on the first and the | ast tap

You can al so get a phase shift of any angle "a
n
- X
\ i /
> cos(x---+a) |
/ n | cos(x+a) dx
/
i =0 0
lim --------moeommo - R T
n- >00 n+1 X
(x -> -pit)
sin(x+a) - sin(a) sin(-pi t + a) - sin(a)
i T T T TN B i T T
X -pi t

Note that reversing t has already been done here, so we can take the
coefficients directly fromthis formula. The linit t->0 is naturally
cos(a), because all the cosines added together had phase "a" at x=0.

In case you didn't yet realize it, the main idea in FIR filter nmaking
is to create a function that contains the frequenci es you want to pass
the filtering. The anplitudes of the frequencies in the function
directly define the magnitude frequency response of the filter

The phases of the frequenci es define the phase response.

Reversing the coefficients is only necessary with phase shifting
filters, because filters that do not introduce a phase shift of any
kind are symmetrical around t=0.

*** Defining the frequency range included ***

If you use sinc as your filter coefficient formula, you actually do no
filtering, because all the frequencies fromO to Nyquist are equally
presented in sinc. Here you'll see how you can sel ect which frequencies
will be present in your filter coefficient fornmula. Renenber where we
originally got sinc from

X
/
(x -> pit)
| cos(x) dx
0 si n(x) sin(pi t)
____________ = [-> .,
X X pi t

In the integral, the upper Iimt (1x) actually represents the highest
frequency included (1), and the lower limt (0x) the lowest (0). So if
you want a fornula for a bandpass filter, you can wite:

top x
/

| cos(x) dx

bott om x

where top and bottomare the cutoff frequencies in such way that 1
means the Nyqui st frequency, and O neans OHz. Now just put there
what ever frequencies you want, calculate, and replace x with (pi t).
There's your filter coefficient formula ready! For exanple, if you
want to nmake a hal fband | owpass filter (which naturally has cutoff
frequency at sanplerate/4, sane as Nyqui st frequency / 2):

0.5 x 0.5 x
/ /
(x -> pit)
| cos(x) dx | cos(x) dx
/
0 X 0 si n(x/2) sin(pi t/2)
------------ = I e I I -> I
X X X pi t

To create nmulti-band filters, you can conbi ne several bandpass filter
fornul as by addi ng them toget her.

*** The equal i zer exanple ***

If you want to make an equalizer (a filter that allows you to define
t he magni tudes for certain frequencies), you probably sumtogether a
| ot of bandpass filter formulas, scal ed by the nmagnitudes you want for
the frequency segnents. This gives you a magnitude response that | ooks
very much like as if it was made of bricks:

(*=defined frequency)

Maybe you'd want it to |look nore |ike this instead:

There are three ways. The first way is to "use smaller bricks", meaning
that you divide the frequency into narrower-than-before segnents and
use interpolation to get the magnitude val ues for the new narrow
bandpass filters you then conbi ne.

The second way is to define a polynom al (like ax"3+bx"2+cx+d) that has
the wanted characteristics (and where x=1 represents freq=SR/' 2), and to
make the magnitude response of your filter to followit. This is
possi bl e.

The third way is to add together several bandpass "ranmp" filter
fornulas. In the nmagnitude response this solution | ooks |ike straight
lines drawn between the adjacent defined frequencies. This is also
possi ble, and, in ny opinion, the best solution

*** Pol ynom al shaped magni tude frequency response ***

In sinc, all the cosine waves added toget her have equal anplitudes, as
you see here - all the frequencies are treated equally:

You can change this by putting there a function g() that defines the
anpl i tudes of the cosine waves of different frequencies:

If the function g(x) is forma*x~b, the calculations go like this:

For a sinple exanple, if we want the nmagnitude frequency response to be
a straight line, starting fromO at OHz, and ending at 1 at SR/ 2, we
define g(x) = x:

And the filter coefficient fornula calculations for this:

X
/
I cos(x)*1*x"1 dx (x -> pi t)
0 cos(x) +x*sin(x) -1 cos(pi t)+(pi t)*sin(pi t)-1
""" N Y
That's it!

In other cases, to get the formula for a full polynomal, do the
cal culations for each of its terns (a*x"b) separately and sumthe
results.

*** Bandpass magni tude-ranp ***

Here's an exanple of the magnitude frequency response of a ranp filter

frequency ->

To nmake a bandpass ranp, you nust first define the polynom al g(x) that
descri bes how t he magni tude behaves inside the bandpass limts. The
magnitude is linear inside the linmits, so the polynonial g(x) must be
formc*x+d. C and d can be solved fromthe equations:

[g(x1) =yl
<

\og(x2) =y2

where x1 is the lower frequency linmt, and x2 the higher. Y1l and y2 are
the magnitudes of the limt frequencies. Renenber that here x=1 equal s
frequency=SR/ 2. OK, here are ¢ and d sol ved:

G x)=c*x+d is a polynomial, and you already know how to make the
magni t ude frequency response have the sanme shape (Section "Pol ynom al
shaped magnitude frequency response”) as a polynom al. You al so al ready
know how to include only limted range of frequencies (Section
"Defining the frequency range included") in your coefficient formula.
Combi ne this know edge, and you can wite the coefficient fornula for
the ranp bandpass filter

X2 X X2 X
/ /
| cos(x)*c*x™1 dx | cos(x)*d*x"0 dx
x1 x x1 X
.................... F e e e e e e e e =
XM (1+1) x"(1+0)

d ---------emmee - (And then, as always, x -> pi t)

A note about inplenenting the equalizer... If the equalizer is to be
adjustable realtine, recalculating the whole equalizer filter formula
with all the trigononetric functions may turn out too heavy. It may be
better to precalculate coefficients for several overlapping filters,
for exanple these for a three-channel equalizer

When cal cul ating the coefficients for the whol e equalizer, just pick
t he correspondi ng coefficients fromthese, scale according to the
"equal i zer sliders", and sum

*** \W ndowi ng ***

If you take your FIR filter coefficients directly fromyour "filter
formul a", you get a very wavy magnitude response. The reason is sinple:
The nunber of coefficients is linmted, but the filter formula is not,
it continues having nonzero val ues outside the range you are using for
the coefficients.

A wi ndowi ng function hel ps. Not using a wi ndowi ng function is the sane
thing as using a rectangular (= flat inside its lints) w ndow ng
function. Using a wi ndowi ng function neans that you nmultiply the val ues
taken fromyour infinitely long filter fornmula by the correspondi ng

val ues taken fromyour finitely | ong w ndowi ng function, and use the
results as filter coefficients.

Here are sone w ndow ng functions, and the produced magni tude responses

of a FIR lowpass filter with a | ow nunber of taps, illustrated:
rect angul ar cos”2 cos™4
1] _ _
| _-- - / \
| time->) \ | \
0_| - - -- -
1] \ I\ T o
| \] | \ --
| I | \
| | | |
| | — _ _ | \
0| freqg-> |/ N1\ \ -- - -

As you see, the steeper the cutoff, the nore waves you get. Al so,

if we'd | ook at the magnitude responses in dB scale, we'd notice that
fromthe three, cos™4 gives the best stopband (= the frequency range
that should have 0 magnitude) attenuation

Mat hematically, nmultiplication in the time domain is convolution in the
frequency donain, and wi ndowing is exactly that. (Also, multiplication
in the frequency domain is convolution in the tine domain.)

| hope i didn't slamtoo many new words to your face. Tinme domain

means the famliar tinme-anplitude world, where we do all the FIR and
IR filtering. The frequency domai n neans the frequency-anplitudeé&phase
worl d that you get into through Fourier transformation. And
convolution; In the tinme domain, FIRfiltering is convolution of the

i nput signal with the filter coefficients. Say you convol ute
0,1,0,0,2,0,1,0 with 1,2,3 (where 2 is at the center): You'll get
1,2,3,2,4,7,2,3. If you understand this exanple, you surely understand
convol ution too.

Ideally (inpossible), there would be no wi ndowi ng, just the constant
value 1 infinitely in tine. And a steady constant value in the tine
domain is sane as OHz in the frequency donmain, and if you (in the
frequency donain) convolute with OHz, it is the sanme as no convol ution

Convol ution in the frequency domain equals to nultiplication in the
time domain, and convolution in the tine domain equals to
multiplication in the frequency domai n. Sounds sinple, eh? But note
that in this "frequency domai n", there are positive AND NEGATI VE
frequencies. You'll learn about those in chapter "Positive and negative
frequenci es".

*** \Whrds of wi sdom ***

You get flat (but not necessarily continuous) phase response if your
filter (=filter coefficients) is symetrical around t=0 or around
(0,0), even if you limt the nunber of coefficients and/or w ndow them

Someti nes you can optimnize your filter code a lot. Sone coefficients
may turn zero, so you can skip their multiplications. If your filter
is symmetrical around t=0, you can instead of "input(t)*a+input(-t)*a"
wite "(input(t)+input(-t))*a)". If your filter is symetrical around
(0,0), replace "input(t)*a-input(-t)*a)" with "(input(t)-input(-t))*a"

Sinc(t) is 1 at t=0, and 0 at other integer t val ues.

Calculating the limt t->0 is very sinple. If your filter formula was
originally a sumcosines (neaning it's not a phase shift filter), the
limt t->0 is sinply the area of the nagnitude frequency response, in
such way that the area of "no filtering" is 1

--- Filter inplementation ---

The actual filter inplenmentation (after possible coefficient
cal cul ati ons) depends nmuch on how the input data is fed to the filter
| can see three cases:

* Kk * Case 1 * k%

You have the whole input data in front of you right when you start. A
sanple editor is a good exanple on this.

This is the easiest case. Wth FIRfilters, just take values fromthe

i nput data, multiply with coefficients and sum like this: output(t) =
a0*input(t-2) + al*input(t-1) + a2*input(t) + a3*input(t+1) +
ad*input(t+2). The only problemis what to do at the start and at the
end of the input table, because reading data fromoutside it would only
cause problens and nmispredictability. A lazy but well working solution

is to pad the input data with zeroes, like this:
[----- Filter------] (Situation: t = 0)
00000000[---------=--=----- Input-data------------------ 100000000
(Situation: t = max) [----- Filter------]
00000000[------------------ Input-data------------------ 100000000

This is howit's nostly done with FFT filtering. Wth FIRfilters, it
isn't that hard to wite a version of the routine that only uses a

limted range of it's taps, like this:
[er------] (Situation: t = 0)
[-----------eem - I nput -data------------------]
[lter------] (Situation: t = 2)
[---------m e - - I nput -data------------------]
(Situation: t = max) [----- Fil]
[------mmmmmmma - I nput-data------------------]

and to use that version at the start and at the end. For this, it is
easiest if you have a table of coefficients instead of hard-coding
theminto the routine.

* % % Case 2 * % %
Data is fed to the filter in snmall chunks, but it is continuous over

the chunk borders. This is the nbst conmon situation in prograns
handl i ng real ti ne audi o.

* k * Case 3 * k *x

One sanple at a tine. Case 2 can be treated as this, because the chunks
can al ways be chopped into single sanples.

It is a fact that you cannot use future inputs in this case, so a FIR
filter would have to be of form such as: output(t) = a0*input(t-4) +
al*input(t-3) + a2*input(t-2) + a3*input(t-1) + ad4*input(t). Cearly
this kind of a filter creates a delay, but that's just a thing you have
to learn to live with. Also, you only get in one sanple at a tineg,
which is not enough for filtering, so you have to store the old input
val ues sonehow. This is done using a circular buffer. The buffer is
circular, because otherw se you'd soon run out of nenory. Here's a set
of pictures to explain the schene:

W (= Wite-to position)

time=0 [------- Crcular-buffer--------]
] [-------- Filter-------
w
time=5 [------- Crcular-buffer--------
-----] [--------Filter--
w
ti me=26 [------- Crcular-buffer--------]
[-------- Filter-------]
w
ti me=buffer I ength [------- Crcular-buffer--------]
] [-------- Filter-------

The buffer nmust be at |least as long as the filter, but it is practica
to set the length to an integer power of 2 (In the above exanpl e:
27"5=32), because then you can use the binary AND operation to handle
poi nter w apping al ways after increasing or decreasing one (In the
above exanple, AND with 31). Even better, use byte or word
instructions, and wapping will be "automatically" handled in
over/underfl ows caused by the natural linmts of byte or word.

Note that the buffer should be filled with zeroes before starting.
A simlar circular buffer scheme is also often the best solution for

i mpl enmenting the output part of an IIR filter, no matter how the input
part was realized

--------------------------------- Posi tive and negative frequencies ---

There are both positive and negative frequencies. Until now we haven't
had to know this, because we have been able to do all the cal cul ations
by using sines as frequencies. Don't be fooled that positive
frequenci es woul d be sines, and negative ones sonething el se, because
that is not the case.

In all real (nmeaning, not conplex) signals, positive and negative
frequenci es are equal, whereas in a conplex signal the positive and
negative frequencies don't depend on each other. A single sinewave
(real) consists of a positive and a negative frequency. So any sine
frequency could be expressed as a sumof its positive and negative
conmponent. A single, positive or negative, frequency is:

i (frequency x + phase)
anplitude * e

and could also be witten as:

anp * (cos(freq x + phase) + i sin(freq x + phase))
As stated, a sinewave consists of a positive and a negative frequency
conponent. Here's the proof: (The phase of the negative frequency nust

al so be inverted, because it "rotates" to the other direction)

i (+freq x +phase) i (-freq x -phase)
e + e

cos(freq x + phase) + i sin(freq x + phase)) +
cos(freq x + phase) - i sin(freq x + phase))

2 cos(freq x + phase)

As you see, the imaginary parts nullify each others, and all that
remains is the real part, the sine wave. Anplitude of the sine wave is
the sum of the anplitudes of the positive and the negative frequency
conmponent (which are the sane). This also proves that in any rea
signal, positive and negative frequencies are equal, because a rea
signal can be constructed of sine waves.

The conplex Z-plane is a good place to | ook at positive and negative
frequenci es:

+pi /2
B
_! I _
o | \
+pi | I I
(Nyquist) — or -|-------- boooos - 0
-pi | I I
\ | |
\ | |
-] ---
-pil2

Positive frequencies are on the upper half of the circle and negative
frequencies on the I ower half. They neet at angles 0 and the Nyqui st
frequency.

*** Alj asi ng ***

Al'iasing usually neans that when you try to create a sine wave of a
frequency greater than the Nyqui st frequency, you get another frequency
bel ow the Nyqui st frequency as result. The new frequency | ooks |ike as
if the original frequency woul d have reflected around the Nyqui st
frequency. Here's an exanpl e:

What you want: | | f (f = sine wave frequency)
VWhat you get: | fo
0 SK/ 2

The cause of aliasing can be easily explained with positive and
negative frequencies. The positive conponent of the sine wave actually
gets over the Nyquist frequency, but as it follows the unit circle, it
ends up on the side of negative frequencies! And, for the sane reasons,
t he negative conponent arrives on the side of positive frequencies:

The result is a sine wave, of frequency SR-f.

*** Anal ytic signal ***

It is sometines needed to first create a version of the original signa
that only contains the positive frequencies. A signal like that is
called an analytic signal, and it is conplex.

How does one get rid of the negative frequencies? Through filtering!

It is possible to do the job with an IR filter that doesn't follow the
conj ugat e- pai r- pol es-and-zeros rule, but a FIRfilter is significantly
easier to create. W'll use the old fornmula that we first used to
create sinc:

but this time, instead of cosines, only including the positive
frequenci es:

X
/

| er(ix) dx

As you see, the filter coefficients are conplex. W should al so hal ve
the anplitude of the positive frequency (it should be half of the
anpl i tude of the cosine, because the negative conponent is gone) but
that's not necessary, because it'd only scal e the magnitude.

To convert the conplex analytic signal back to real, just throw away
the imaginary parts and all the frequencies get a conjugate (on the
z-plane) pair frequency. Here the anplitudes drop to half, but as we
ski pped the halving in the filtering phase, it is only wel cone.

The real to analytic signal conversion could al so be a good spot for
filtering the signal in other ways, because you can conbi ne ot her
filters with the negative frequency renoval filter

-- Frequency shifting ---
*** Anplitude nodul ation ***

Anpl i tude nodul ation neans nultiplying two signals. Al sanplepoints in
the nodul ated signal are nultiplied by the correspondi ng sanpl epoints
in the nodul ator signal. Here's an exanpl e:

Oiginal: | | | | |
DU I I I

Modul at or : |

Result: | L1
SN I O B D

What happens if we nodulate a signal with a sinewave? The origina
signhal is (as we have |l earned) a sum of frequecy conmponents, sinewaves
of various frequencies, anplitudes and phases. Note that the signal we
are tal king about here is real, not conplex. Say "sNUMBER' is one of
t he frequency conponents. So, we can wite the original signal as:

sO + sl + s2 + s3 (and so on...)
Now, if we multiply this signal with the nmodul ator signal "ni', we get:

(sO + s1 + s2 + s3) *m
= s0*m+ sl*m+ s2*m + s3*m
This is good, because as you see, it's the sane as if the frequency
conponents were processed separately, so we can al so | ook at what
happens to each frequency conponent separately. A frequency conponent
can be witten as:
anp * cos(f x + a)

where anp is the anplitude, f the frequency and a the phase. The
nmodul ator sine can be witten the same way (Only added the letter nj:

manp * cos(nf X + mm)
Mul tiply those and you get:

anp * cos(f x + a) * manp * cos(nf x + na)
CIEEEEEEEE cos((f+nf)x + a+ma) + -------- cos((f-nf)x + a-ma)

If we discard the phase and anplitude information, we get:
cos((f+nf)x) + cos((f-nf)x),

which is two frequencies instead of the origial one.

Here's a graph that shows how the frequencies get shifted and copi ed.
The original frequency is on the "-" axis and the resulting

frequency/frequencies on the "|" axis:

No nodul ati on: Modul at ed:
I ! I !
I _ | N
|) |/ _
| | |/ / nmodul ator
| _/ [\ frequency
/. __ O S

0,0 0,0

In the graph "Modul ated", the frequencies that would seemto go bel ow
zero, get aliased and therefore reflect back to above zero. |In sanpled
signal, the Nyquist frequency also mrrors the frequenci es.

*** Frequency shifting ***

Wth sone tweaking and linitations, you could nmake a frequency shifter
by using sinewave nodul ation, but there's a better way.

Let's try nmodulating the signal with e*(i nf x) instead of cos(nf x).
Phases and anplitudes are irrelevant, so i've just ignhored them (I
hope you don't nmind!) Let's see what happens to a single

positivel/ negative frequency when it is nodul at ed:

e(i f x) * er(i nf Xx)
er(i f x + i nf x)
er(i (f+nf)x)

The answer is very sinple. The original frequency got shifted by the
nodul at or frequency. Notice how the rule "Multiplication in the tine
domain is convolution in the frequency domain." applies here al so.
Here's an exanple on the z-plane unit circle. p0, pl, p2 are the
positive frequencies and n0O, nl, n2 their negative conjugate
frequenci es. Say the nodul ator frequency rotates the frequencies 1/4
full cycle countercl ockw se:

Modul at or: No nodul ati on: Modul at ed:
_e--m-- ---pl-- _p0--]---n0
| | \ | | \) | \
/ | \ p2 | p0 / | \
I I I I I I I I I
S R EEEREEE BRI Bt SRRREEEE |- -pLl------- heo e n
I I I I I I I I I
\ | | n2 | no \ | |
\ | | \ | | _ |]
-] --- ---nl-- p2--]---n2

In the nodul ated signal, the original pair frequencies (like p0O and n0)
are no longer conjugate pairs. That's bad. Another bad thing is that
negative frequencies get on the side of positive frequencies and vice
ver sa.

But if we first filter all the negative, and those of the positive
frequencies that would arrive on the wong side of the cirle, and then
nodul ate the filtered signal: (The filter formula is in the chapter
"A collection of FIRfilters" in section "Conbi ned negative frequency
renoval and bandpass")

Original: Filtered: Filtered & nodul at ed:
---pl-- ---pl-- _pO--|---__
| | \ | | \) | \
p2 | pO / | pO / | \

I I (. I | I I
I ERRREEEE EEEEEEE R EEREEEEE SRRREEEE |- -pLl------- b -
I I | I (. I I
n2 | _no \ | _ \ | _
\ _ \ _ \ _
---nl-- ___|___ ___|___

Now it | ooks better! To nmake this filtered & nodul ated conpl ex signal
back to real again, just discard the imaginary part and all the
frequenci es get a conjugate pair:

Wth inmaginary: | magi nary di scarded:
_PO--]---__ _PO--]---__
! I _ ! | _
/ | \ / | \

I | | | I |
-pl------- Fo--o--- - |- plnl------ R | -
| | I I | I
\ | N \ | N
\ | / \ | /
| |

--- Nat ure of sound and nusic ---
*** Harnoni cs ***

For nost sounds, frequency shifing doesn't do a very good job, because
t hey consi st of a fundanental frequency and its harnonics. Harnonic
frequencies are integer multiples of the fundanental frequency. After
you have shift all these frequencies by the sane constant frequency,
they no | onger are harnonics of the fundanental frequency. There are
ways to do scaling instead of shifting, but just scaling the
frequenci es woul d be sane as resanpling, and resanpling al so stretches
the sound in tinme, so it has to be sonmething smarter. The nmain idea is
to divide the sound into narrow frequency bands and to shift/scale them
separately.

K, so frequencies usually come with harnmonics - Wiy? Just think where
sounds in nature originate from vocal cords in our throat, quitar

strings, air inside a flute... Al vibrating "objects", and you have
probably | earned at school that objects have several frequencies in
which they "like to" vibrate, and those frequenci es are harnonics of

some frequency.

What happens in those objects is that they get energy from somewhere
(moving air, player's fingers, air turbulence), which starts all kinds
of vibrations/frequencies to travel in them Wen the frequencies get
reflected, or say, go around a church bell, they neet other copies of
thenselves. If the copies are in the same phase when they neet, they
anplify each other. In the opposite phases they attenuate each other
Soon, only few frequencies remain, and these frequencies are al

har noni cs of sane frequency. Like so often in physics, this is just a
sinplified nodel.

A note about notation! :) The fundanental frequency itself is called
the 1st harnonic, fundanental *2 the 2nd, fundanental *3 the 3rd, and so
on.

*** Chromatic scale ***

In nmusic, harnonics play a very inportant role. The "chromatic scal e",
used in nost western nusic, is divided into octaves, and each octave is
divided into 12 notes. The step between two adjanced notes is called

a halftone. A halftone is divided into hundred cents.

An octave up (+12 hal ftones) neans doubling the frequency, an octave
down (-12 hal ftones) neans halving it. If we ook at all the notes
defined in the chromatic scale on a logarithnc frequency scale, we
note that they are evenly located. This neans that the ratio between
the frequencies of any two adjacent notes is a constant. The definition
of octave causes that constant”~12 = 2, so constant = 27°(1/12) =

1. 059463.

If you know the frequency of a note and want the frequency of the note
n hal ftones up (Use negative n to go downwards) fromit, the new
frequency is 2*(n/12) tinmes the old frequency. |If you want to go n
octaves up, nmultiply by 27n.

But why 12 notes per octave?

As said, harnonics are inportant, so it would be a good thing to have
a scal e where you can form harnonics. Let's see how well the chromatic
scal e can represent harnonics... The first harnmonic is at the

note itself: +0 halfnotes = 1. The second harnmonic is at +1 octave = 2.
The third harnonic is very close to +1 octave +7 halftones =

+19 hal ftones = 27(+19/12) = 2.996614. And so on... Here's a table that
shows how and how wel | harnonics can be constructed:

Har noni ¢ Oct aves+Hal ftones Hal ft ones Error(Cents) Acceptable

1 0 0 0 0 Yes
2 1 0 12 0 Yes
3 1 7 19 -1.955 Yes
4 2 0 24 0 Yes
5 2 4 28 +13. 686 Yes
6 2 7 31 -1.955 Yes
7 2 10 34 +31. 174 No

8 3 0 36 0 Yes
9 3 2 38 -3.910 Yes
10 3 4 40 +13. 686 Yes
11 3 6 42 +48. 682 No

12 3 7 43 -1.955 Yes
13 3 8 44 -40.528 No

14 3 10 46 +31. 174 No

15 3 11 47 +11. 731 Yes
16 4 0 48 0 Yes
17 4 1 49 -4. 955 Yes
18 4 2 50 -3.910 Yes
19 4 3 51 +2. 487 Yes
20 4 4 52 +13. 686 Yes
21 4 5 53 +29. 219 No

22 4 6 54 +48. 682 No

23 4 6 54 -28.274 No

24 4 7 55 -1.955 Yes
25 4 8 56 +27. 373 No

Not bad at all! The | owest harnonics are the nobst inportant, and as you
see, the errors with themare tiny. | also tried this with other

nunbers than 12, but 12 was clearly the best of those bel ow 30. So, the
anci ent Chinese did a very good choi ce! The above table could al so be
used as reference when tuning an instrunment, for exanple a piano (bad
exanple - no digital tuning in pianos), to play sone keys and chords
nore beautifully, by forcing sonme notes to be exact harnonics of sone
ot her notes.

A common agreenent is that one of the notes, "middle-a", is defined to
be at 440Hz. This is just to ensure that different instrunents are in
t une.

--- Fl anger ---
Fl anger is sinply:
output(t) = input(t) + input(t-d)

where d is the length of the variable delay. D values have a | ower
limt, and the variation cones from sine:

d = sonet hingl + sonething2 * sin(t something3)
Because d is not integer, we must interpolate. Mst probably, annoying

hi gh frequency hissing still appears. It can be reduced by | owdass
filtering the del ayed si gnal

--- Wavet abl e synthesis ---

Wavet abl e synthesis neans that the instruments being played are
constructed of sanpled sound data. MOD nusic is a well-known exanpl e.
Al so nost of the basic honme synthesizers use wavetabl e synt hesi s.

*** Pitching ***

Say you have a sanpled instrunent, and want to play it at frequency
f = 440Hz, which is mddle Ain the chromatic scal e.

To be able to do this, you need to know A) the sanplerate of the sanple
and the frequency of the sanpled instrunent, or B) the wavel ength of
the instrument expressed as nunber of sanples (doesn't have to be
integer). So you decide to precal culate the wavel ength to speed up the
realtine routines a little:

ol = sanple SR/ sanmple f = say 256.

The sanpl erate of your mixing system "SR', is 44100Hz. Now that you
know this, you can cal cul ate the new wavel ength, the one you want
(nunber of sanpl es):

SR/ f
44100Hz / 440Hz = 100. 22727

nl

In the nixer innerloop, a "sanple offset" variable is used in pointing
to the sanpledata. Every tine a value is read fromthe sanpl edata and
out put for further mxing, sanple offset is advanced by addi ng variabl e
Ato it. Now we nmust define A so that ol (256) is stretched (here
shortened) to nl (100.22727), in other words, so that for ol

sanpl epoints in the sanpledata, you produce nl output val ues:

A = ol /nl
= 256 / 100. 22727 = 2.55420

Everyt hi ng on one |ine:
A=ol/(SRf) = ol*f/SR

That's it! By using A as the addval ue, you get the right tone.

*** Click renoval ***

There are sone situations when unwanted clicks appear in the output
sound of a sinple wavetabl e synthesizer:

* Abrupt volume (or panning/bal ance) changes.
A sanple starts to play and it doesn't start from zero
anpl i t ude.

* Asanple is played to the end and it doesn't end at zero
anplitude. (Biased sanpledata or badly cut out sanple!)

* A sanple is killed abruptly, nostly happens when new notes
kill the old ones.

* Poor |oops in a sanple.

And what does hel p? Here's sonme advi ce:

Vol ume changes nust be snoot hed, maybe "ranped”, so that it'll always
take a short tinme for the new volune to replace the old. dicky sanple
starts can be nuffled, neaning that the volume is first set to zero and
then slided up. This could of course be done beforehand too, and sone
think muffling sanple starts is wong, because the click nmay be

del i berate. Sonme drum sounds |lose a lot of their power when the starts
are muffl ed.

Anot her case is when the playing of a sanple is not started fromits
begi nning. That will nost probably cause a click, but muffling is not
the only aid - starting to play fromthe nearest zero crossing al so

hel ps. Abrupt sanpl e ends should al so be faded down. This nmay require
sonme sort of prediction, if you want to fade down the sound before it's
"ran over" by anot her sound. This prediction can be nmade by using a
short information delay buffer. It may be easier to just use nore
channels, to allow the new sound to start while the other one is being
faded out in the background, on another channel

When t he sanpl edata ends at a val ue other than zero, the cause may be
that the sanpledata is not centered around the zero level, or that the
creator of the sanple has just cut the end of the sanple away. The
easiest way to fix this is to fade out the end of the sanple

bef orehand. However, this is not always possible.

--- Shuffling Il R equations ---

- Symmetric form

- Turning an IIR filter backwards
Cetting rid of output(t+n)
Cetting rid of input(t+n)

FIR frequency response

Il R frequency response.

Ali wote he tried to nake his text as down-to-earth as possible.
Well, here's a nore nmat hematical approach
But |'ve still tried to nake this intuitive and FUN rather than boring

nmyself with | engthy proofs.

This al so nmeans that there nmay be errors, nost probably in signs.
% Symmetric form*

Say you have this IIR filter

output(t) = a0*input(t) + al*input(t-1) + a2*input(t-2)
+ bl*output(t-1) + b2*output(t-2) + b3*output(t-3)

You can put its equation to this symetric form
a0*input(t) + al*input(t-1) + a2*input(t-2)
= output(t) + (-bl)*output(t-1)

+ (-b2)*output(t-2) + (-b3)*output(t-3)

Now defi ne a new function, mddle(t):

a0*input(t) + al*input(t-1) + a2*input(t-2)
= mddl e(t)
= output(t) + (-bl)*output(t-1)

+ (-b2)*output(t-2) + (-b3)*output(t-3)

You can rewite this as:

mi ddl e(t)
mi ddl e(t)

a0*input(t) + al*input(t-1) + a2*input(t-2)
output(t) + (-bl)*output(t-1)
+ (-b2)*output(t-2) + (-b3)*output(t-3)

Notice how the transition frominput(t) to nmiddle(t) is a FIRfilter
and the transition fromoutput(t) to mddle(t) is another. So the IIR
filter in fact consists of two FIRfilters facing each other. This
gives a sinple approach to frequency response cal cul ations (see the
section "Il R frequency response").

*** Turning an IIR filter backwards ***
You can solve input(t) fromthe IIR equati on:

output(t) = a0*input(t) + al*input(t-1) + a2*input(t-2)
+ bl*output(t-1) + b2*output(t-2) + b3*output(t-3)

a0*input(t) = output(t) + (-bl)*output(t-1) + (-b2)*output(t-2)
+ (-b3)*output(t-3) + (-al)*input(t-1) + (-a2)*input(t-2)

i nput (t) = (1/a0)*output(t) + (-bl/al)*output(t-1)
+ (-b2/a0)*output (t-2) + (-b3/a0)*output(t-3)
+ (-al/a0)*input(t-1) + (-a2/a0)*input(t-2)

Now swap i nput and output and you have a filter that undoes what the
ori gi nal did.

But if the frequency response of the original filter was ZERO for sone
frequency, the inverted one will anplify that frequency | NFI N TELY.
This is just |ogical

The inverted filter will also have an opposite phase shift, so that if
R(f) is the frequency response of the original filter as a conplex
nunber and r(f) is the frequency response of the inverted filter
R(f)*r(f)=1 for every f.

*** CGetting rid of output(t+n) ***
Say you have somehow found that you need an IIR filter like this:

output(t) = a0*input(t) + al*input(t-1) + a2*input(t-2)
+ bl*output (t-1) + b2*output(t-2)
+ Bl*out put (t+1) + B2*out put (t+2)

You need to know both output(t+2) and output(t-2) to be able to
conmpute output(t). Doesn't seemvery practical. But you can
shuffle the equation a little:

a0*input(t) + al*input(t-1) + a2*input(t-2)
= (-B2)*out put (t+2) + (-Bl)*output(t+1)
+ output(t) + (-bl)*output(t-1) + (-b2)*output(t-2)

Now define a new vari able u=t+2 and use it instead of t:

a0*i nput (u-2) + al*input(u-3) + a2*input(u-4)
= (-B2)*out put (u) + (-Bl)*output(u-1)
+ out put(u-2) + (-bl)*output(u-3) + (-b2)*output(u-4)
Then sol ve out put (u):
B2*out put (u) = -a0)*input(u-2) + (-al)*input(u-3)
-a2) *input (u-4)
-B1) *out put (u-1) + output(u-2)
-bl) *out put (u-3) + (-b2)*output (u-4)

+
+
+
out put (u) = a0/ B2) *i nput (u-2) + (-al/B2)*input(u-3)
a2/ B2) *i nput (u-4)

B1/ B2) *out put (u-1) + (1/B2)*output (u-2)

(-
+ (-
+ (-
+ (-bl/B2)*out put (u-3) + (-b2/B2)*output (u-4)

Now you can use the filter
*** Getting rid of input(t+n) ***

Notice how in the previous exanple, input(t) became input(u-2).
Had there been input(t+1), it would have becone i nput(u-1) which
can be used in real time filters.

Cenerally, you can get rid of input(t+n) this way if the equation
al so uses output(t+n) where np=n, because you can define u=t+m which
turns input(t+n) to input(u-(mn)) which you get in tine.

If men, this is not possible:
output(t) = a0*input(t) + Al*input(t+1)

Here mr0 and n=1, so you can't get rid of input(t+l) and keep the
filter mathematically equivalent to the original

However, you can delay the output by one tinme unit:

del ayed output(t+1) = output(t) = aO*input(t) + Al*input(t+1)
del ayed out put (u) = a0*input(u-1) + Al*i nput(u)

Usual Iy, this snmall delay doesn't matter. But it changes the phase
frequency response of the filter and this DOES matter if you then m X
the filtered signal with the original one or others derived fromit;
in that case, you'd better nmake sure that all of the signals have the
same delay. (Except if you happen to like the extra effect.)

(For exanple, if you have a filter output(t)=input(t-1), it doesn't do
much as such. But if you nmix the "filtered" signal with the origina
one, the mxing becones a filter in itself and you can conpute its
frequency response and all.)

If you try to force the original filter through the u=st+mtrick by
i ntroduci ng a dummy O*out put (t+1) term

output(t) = aO*input(t) + Al*input(t+1) + O*output(t+1)
a0*input(t) + Al*input(t+l) = -O*output(t+1l) + output(t)
a0*input (u-1) + Al*input(u) = -0*output(u) + output(u-1)
-0*out put (u) = a0*input(u-1) + Al*input(u) - output(u-1)
output(u) = (a0*input(u-1) + Al*input(u) - output(u-1)) / O
you'll just get division by zero.

*** F| R frequency response ***

Treat a sine wave as a rotating phasor en(i*t*2*pi*f/fs) where
base of natural logarithns (~2.718)

i magi nary unit (i*i=-1)

time (integer, as it's sanpl ed)
=ratio of circle perinmeter to radius (~3.141)

= frequency
s = sanpling frequency = sanplerate

e
[
t
p
f
f

The real conmponent of this phasor is the regular sine wave.

The neat thing about this is that you can multiply it with various
conpl ex nunbers to scal e the magni tude and shift the phase at the sane
tine.

By defining z=en(i*2*pi*f/fs), the phasor can be witten as z*t. This
is the same z that is used in pole-zero calculations (see chapter "IIR
filter design using pole-zero nethod").

Here's the general FIR equation

n
output (t) = sum nm(Kk)*input (t-k)
k=0

wher e

k = counter running fromO to n

n = nunber of taps - 1

mk) = multiplier (a real number) indexed by k

Now, let's | ook what the filter does to an infinitely | ong sine wave
with frequency f.

i nput (t) = sin(t*2*pi*f/fs)

n
output(t) = summk)*sin((t-k)*2*pi*f/fs)

k=0
But this sine wave can be replaced with the rotating phasor if we then
throw away the inmagi nary conponent of the output. mKk) is real so the
real and i magi nary conponents can't affect each other

i nput (t) = z™t

n

output (t) = sum m(k)*z~(t-Kk)
k=0
n

output (t) = sum m(k)*z~rt*z~(-k)
k=0

Here the z~t factor doesn't depend on k, so it can be noved outside
the sum

n
output(t) =z~ * sum m(k)*z”(-Kk)
k=0

n
output(t) = input(t) * sum m(k)*z"(-k)
k=0

z depends on f (z=en(i*2*pi*f/fs), remenber?) but the value of the sum
doesn't depend on t. I'Il call it R(f):

n
R(f) = sum n(k)*z(-k)
k=0

output (t) = R(f) * input(t)

output(t) is a rotating phasor at the same frequency as input(t); it
just has a different anplitude and phase as defined by R(f). This
means that for an infinitely Iong sine wave of frequency f, R(f) shows
how the filter affects its anplitude and phase.

In other words, R(f) is the frequency response of the filter. It's a
conplex function. |If you don't renmenber what this neans, see section
"Conplex math with filters" in chapter "What's a filter?" in this
file.

*** | IR frequency response ***

When two filters are concatenated so that one filter's output is fed
to the other filter's input, the responses are nultiplied at each
frequency:

Rconcat (f) = Rfirst(f) * Rsecond(f)

A filter that just connects its input to its output and doesn't change
the signal at all has a frequency response of 1 at all frequencies:

Rnothing(f) =1

Now assume that we have a filter with frequency response R(f) and we
make another filter with frequency response Ri nv(f) that UNDOES
everything the first filter did to the signal when they are

concat enat ed.

R(f) * Rnv(f) =1 ==> Rinv(f) = 1/ R(f)
So the inverse filter also has an inverse frequency response.

Renenber, an IR filter consists of two FIRfilters facing each other
(see section "Symmetric form'). This setup can be treated as a nornal
FIRfilter followed by an inverted FIRfilter

Riir(f) Rfirl(f) * Rinvfir2(f)
Rfirl(f) * (L Rfir2(f))
Rfirl(f) / Rfir2(f)

This nmeans that if you can calculate the frequency responses of the
two FIR filters, you can calculate the IIR frequency response by
di viding one with the other

An exanple. You have this IIRfilter

output(t) = a0*input(t) + al*input(t-1) + a2*input(t-2)

+ bl*output(t-1) + b2*output(t-2) + b3*output(t-3)
It becones:
mddle(t) = aO*input(t) + al*input(t-1) + a2*input(t-2)
mddle(t) = output(t) + (-bl)*output(t-1)

+ (-b2)*output(t-2) + (-b3)*output(t-3)
Change the nanes of functions a little:
output1l(t) = a0*inputl(t) + al*inputl(t-1) + a2*inputl(t-2)
output2(t) = input2(t) + (-bl)*input2(t-1)
+ (-b2)*input2(t-2) + (-b3)*input2(t-3)

Conpute the frequency response of filter inputl->outputl (originally
i nput - >mi ddl e).

The general formul as:
z=eMN(i*2*pi *f/fs)
n
R(f) = sum n(k)*z"(-Kk)
k=0
In this particular case:

n=2
m0)=a0, m(1l)=al, m(2)=a2

RI(f) = m(0)*z"(-0) + nm(1)*z"(-1) + n(2)*z"(-2)
a0*1 + al*z~(-1) + a2*z"(-2)
a0 + al*en(-i*2*pi*f/fs) + a2*e™(-i*4*pi*f/fs)

The input2->output2 (originally output->middle) filter

n=3
m0)=1, m(1)=-bl, m(2)=-b2, mM3)=-b3

R2(f) = m(0)*z”*(-0) + nm(1)*z"(-1) + m(2)*z"(-2) + n(3)*z"(-3)
1*1 - bl*zA(-1) - b2*z~(-2) - b3*z~(-3)
1 - bl¥er(-i*2*pi*f/fs) - b2¥er(-i*4*pi*f/fs)

- Db3*er(-i*6*pi*f/fs)

Now t he whole IIR
R(f) = RI(f) / R2(f)
a0 + al*en(-i*2*pi*f/fs) + a2xen(-i*4*pi *f/fs)

1 - bl*er(-i*2*pi*f/fs) - b2¥er(-i*4*pi*f/fs) - b3*er(-i*6*pi*f/fs)

To actually calcul ate the frequency response at sone frequency, you'd
apply Euler's fornula and the usual conpl ex nunber rul es:

er(i*x) = cos x + i*sin X
r* (a+b*i) =r*a + (r*b)*i

(a + b*i) + (c + d*i)

(a+c) + (b+d)*i
(a + b*i) * (c + d*i) a*c + a*d*i + b*i*c + b*i*d*i
a*c + (a*d+b*c)*i + b*d*(-1)
(a*c-b*d) + (a*d+b*c)*i

(a + b*i) * (a - b*i) = a*a - a*b*i + b*i*a - b*i*Db*i

a*a + b*b

c + d*i (c +d*i) * (c - d*i) c*c + d*d

-------------------------------------- A collection of IIRfilters ----
Rin the filters neans resonance, steepness and narrowness.
*** Fastest and sinplest "lowpass" ever! ***
c =0..1 (1 = passes all, 0 = passes nothi ng)
output (t) = output(t-1) + c*(input(t)-output(t-1))
*** Fast | owpass with resonance vl ***

Par anmet er s:
resof req = resonation frequency (mnmust be < SR/ 4)
r =0..1, but not 1

Init:

c = 2-2*cos(2*pi *resofreq / sanpl erate)
pos = 0

speed = 0

Loop:

speed = speed + (input(t) - pos) * c
pos = pos + speed

speed = speed * r

output(t) = pos

*** Fast | owpass with resonance v2 ***

Par amet er s:
resof req = resonation frequency (nmust be < SR/ 4)
anp = magnitude at the resonation frequency

it:
= cos(2*pi *resofreq / sanpl erate)

= 2-2*fx

= (sqgrt(2)*sqrt(-(fx-1)73)+amp*(fx-1))/(amp*(fx-1))
os =0
speed = 0

speed = speed + (input(t) - pos) * c
pos = pos + speed

speed = speed * r

output(t) = pos

*** Hal f band | owpass ***

bl = 0.641339 b10 = -0.0227141

b2 = -3.02936

b3 = 1.65298 a0al2 = 0.008097

b4 = -3.4186 alall = 0.048141

b5 = 1.50021 a2al0 = 0.159244

b6 = -1.73656 a3a9 = 0.365604

b7 = 0.554138 a4a8 = 0.636780

b8 = -0.371742 aba7 = 0.876793

b9 = 0.0671787 a6 = 0. 973529

out put (t) alal2*(input(t) + input(t-12))
alall*(input(t-1) + input(t-11))
a2al0*(input(t-2) + input(t-10))
a3a9* (input(t-3) + input(t-9))
a4a8* (input(t-4) + input(t-8))

aba7* (input(t-5) + input(t-7)) + a6*input(t-6)
bl*output (t-1) + b2*output(t-2) + b3*output(t-3)
b4*out put (t-4) + b5*output(t-5) + b6*output(t-6)
b7*out put (t-7) + b8*output(t-8) + b9*output(t-9)
b10*out put (t - 10)

+ 4+ ++++++ 40

* k% l\btch * k%

not ch center frequency
0..1, but not 1

— =
I n

z1x = cos(2*pi *f/ sanpl erate)
a0a2 = (1-r)"2/(2*(| z1x|+1)) + r

al = -2*z1x*a0a2
bl = 2*z1x*r
b2 = -r*r

output(t) = ala2*(input(t)+input(t-2)) + al*input(t-1)
+ bl*ouput(t-1) + b2*output(t-2)

*** Fast bandpass ***

freq = passband center frequency
r =0..1, but not 1

fx = cos(2*pi *freqg/ sanpl er at e)

a0 = (1-r)*sqrt(r*(r-4*fx"2+2)+1)
bl =2 * fx * r

b2 = -rn2

output (t) = a0*input(t)
+ bl*output(t-1) + b2*output(t-2)

* k% Allpass * k *

freq = frequency of the steepest changes in phase
r = 0..1, but not 1

fx = cos(2*pi *freqg/ sanpl erat e)
fy = sin(2*pi*freqg/ sanpl erat e)
z1x = fx/r

zly = fylr

plx = fx*r

ply = fy*r

a0 = r"2

al = -2*z1x*a0

a2 = a0*(z1x"2+z1ly"2)

bl = 2*plx

b2 = -ply”2-plx"2

output(t) = a0*input(t) + al*input(t-1) + a2*input(t-2)
+ bl*output (t-1) + b2*output(t-2)

*** DC renpval ***

Filters O Hz conpletely away, does not attenuate basses above 5Hz in
a 44100Hz sanpling rate system This is a realtine routine. For
exanple in sanple editors, subtracting the average of all the

sanpl epoi nts fromthe whol e sanpl edata usual |y does better job.

Init:
pos =
speed

1o
o

Loop:

speed = speed + (input(t) - pos) * 0.000004567
pos = pos + speed

speed = speed * 0.96

output(t) = (input(t)-pos)

-------------------------------------- A collection of FIRfilters ----
*** 90 degree phase shift ***

Coefficients from (1-cos(t*pi))/(t*pi)
Limt t->0 =0

Coefficients at even t val ues are zero.
Symmetrical around (0, 0).

*** Phase shift of any angle ***
a = angle
Coefficients from (sin(t*pi-a)+sin(a))/(t*pi)
Coefficients at even t values, not including t=0, are zero.
Limt t->0 = cos(a)
* % % LOV\paSS * k% %

f = cutoff frequency / (sanplerate/?2)

Coefficients from sin(t*f*pi)/(t*pi)
Limt t->0 = f

Symmetrical around t=0.
*** Hal f band | owpass ***

Coefficients from 0.5*sin(t*pi/2)/(t*pil/2)
Limt t->0 = 0.5

Coefficients at even t values, not including t=0, are zero.
Symmetrical around t=0.

*** Hi ghpass ***
f = cutoff frequency / (sanplerate/?2)

Coefficients from (sin(t*pi)-sin(t*f*pi))/(t*pi)
Limt t->0 = 1-f

Symmetrical around t=0.
*** Bandpass ***

fl
f2

| ower frequency limt / (sanplerate/?2)
hi gher frequency limt / (sanplerate/?2)

Coefficients from sin(t*f2*pi)/(t*pi) - sin(t*f1*pi)/(t*pi)
Limt t->0 = f2-f1

Symmetrical around t=0.

*** Bandpass magni tude-ranp ***

x1 = lower limt frequency / (sanplerate/?2)
x2 = higher linmt frequency / (sanplerate/?2)
yl = nagnitude at lower limt frequency

y2 = nmagnitude at higher limt frequency

c = (yl-y2)/(x1-x2)
d = (x1*y2-x2*y1l)/(x1-x2)

Coefficients from
((d+c*x2) *sin(x2*t*pi) +(-d-c*x1) *si n(x1*t*pi) +
(c*cos(x2*t*pi)-c*cos(x1*t*pi))/ (t*pi))/ (t*pi)
Limt t->0 = (x2-x1)*(yl+y2)/2
Symmetrical around t=0.

*** Negative frequency renoval ***

Compl ex coefficients from sin(t*pi)/(t*pi) + i*(cos(t*pi)-1)/(t*pi)
Limt t->0 = 1

Real part symmetrical around t=0.
| magi nary part symetrical around (O, 0).

*** Conbi ned negative frequency renoval and bandpass ***

fl
f2

| ower frequency limt / (sanpleratel/?2)
hi gher frequency limt / (sanplerate/?2)

Conpl ex coefficients from
(sin(f2*t*pi)-sin(fl*t*pi))/(t*pi) +
i*(cos(f2*t*pi)-cos(fl*t*pi))/(t*pi)
Limt t->0 = f2-f1

Real part symmetrical around t=0.
| magi nary part symetrical around (O, 0).

- End-

